

- Start moving towards "iron" ext3, like ZFS
 - Work from University of Wisconsin is a first step
 - Checksum much of the data
 - Replicate metadata
 - Detect and repair corruption
 - New component is to handle relational corruption
 - Caused by accidental re-ordering of writes
- Unlike "port ZFS approach" we expect
 - A sequence of small fixes
 - Each with their own benefits

Lustre Memory Client Writeback Cache

- Quantum Leap in Performance and Capability
- AFS is the wrong approach

-Lustre

- Local server a.k.a. cache is slow
- Disk writes, context switches
- File I/O writeback cache exists and is step 1
- Critical new element is asynchronous file creation
 - File identifier difficult to create without network traffic.
 - Everything gets flushed to the server asynchronously.
- Target: 1 client: 30GB/sec on mix of small / big files

